ЗОНДИРОВАНИЕ СЕЙСМИЧЕСКОЕ ГЛУБИННОЕ (ГСЗ):


ЗОНДИРОВАНИЕ СЕЙСМИЧЕСКОЕ ГЛУБИННОЕ (ГСЗ) — метод сейсморазведки, используемый для изучения строения земной коры и верхней мантии. Сущность метода ГСЗ состоит в регистрации глубинных сейсмических волн, возбуждаемых взрывами. При ГСЗ используются системы наблюдений, осуществляющие корреляционные принципы выделения и прослеживания отраженных и преломленных волн (см. Метод корреляционный преломленных волн). Регистрация сейсмических колебаний от взрывов с массой заряда 100—1000 кг, отраженных от глубинных слоев земной коры проводится на профилях длиной в несколько сотен км. Для регистрации глубинных сейсмических волн применяется низкочастотная сейсмическая аппаратура с повышенной чувствительностью. Взрывы производятся в основном в естественных водоемах, реже в скважинах; для усиления эффекта взрыва часто применяется группирование взрывов. В ГСЗ в зависимости от поставленных задач используются системы наблюдений разной детальности: непрерывное, кусочно-непрерывное, точечное профилирование и методика точечных зондирований. Наиболее рационально природу волн в каждом р-не изучать на непрерывном, достаточно детальном профиле, а затем применять более простые системы. Наличие протяженных зон интерференции вынуждает при интерпретации прослеживать не отдельные фазы, а протяженные гр. волн. ГСЗ позволяет изучать положение и форму основных глубинных границ раздела земной коры. Верхняя из них соответствует поверхности кристаллического фундамента (u г 6 км/сек), нижняя — поверхность Мохоровичича (М или Мохо) — относится к подошве земной коры (u г, ~ 8 км/сек; и находится на глубинах-30-75 км. Скорость в кристаллической коре возрастает с глубиной, в верхней части она близка к 6км/сек, а в нижней 6,3—6,8 км/сек. В большинстве р-нов прослеживается промежуточная граница с u г 6,5—6,6 км/сек (поверхность Конрада). Часто исследователи связывают эти границы и соответствующие им волны с поверхностями (сверху вниз) гранитного, базальтового и периодотитового слоев. Эти назв. следует рассматривать только как условные характеристики совокупности признаков каждой гр. волн, а не как указание на геол. природу этих границ. Помимо трех основных гр. волн, наблюдаемых почти во всех р-нах проведения ГСЗ, удается прослеживать 2—3 промежуточных с u г 6,8—7,5 км/сек и лежащие ниже поверхности М границы с u г 9—10 км/сек. Скоростной разрез земной коры, установленный по ГСЗ, позволяет предполагать неоднородно-слоистую модель земной коры с границами раздела как первого (со скачком скорости), так и второго (со скачком градиента скорости) порядков. По данным ГСЗ наряду с общей мощи, земной коры определяется толщина ее основных слоев (осадочного, гранитного и базальтового), выделяется ряд промежуточных границ раздела, изучается их рельеф и определяются их сейсмические характеристики.. Наряду с горизонтальными границами в земной коре по данным ГСЗ устанавливаются и прослеживаются, иногда вплоть до поверхности М, глубинные сейсмические разломы, дающие основание для суждения о блоково-слоистом строении земной коры.

Недостатками ГСЗ на сегодняшний день являются его громоздкость, несовершенство в подборе модели земной коры, соответствующей наблюденному волновому полю, и неоднозначность в определении фнз. и геол. природы сейсмических границ. В СССР ГСЗ проведено на Балтийском щите, Восточно-Европейской платформе, Украинском кристаллическом массиве, на Урале, Тянь-Шане, в Ц. Казахстане, на Кавказе, в Туркмении, Узбекистане, Западно-Сибирской низменности, в переходной зоне между азиатским континентом и Тихим океаном (Охотское и Японское моря), на Каспийском и Черном морях. За рубежом следует отметить работы американских геофизиков в обл. Мирового океана, сейсмические зондирования в США и Канаде, итало-французские исследования в Альпах, работы ГСЗ на Венгерской равнине, в ГДР и др. В результате этих работ мощи, земной коры известна более чем в 300 точках земного шара. Разрезы ГСЗ являются опорными при интерпретации др. геофиз. методов. Сравнение строения коры, определенной по ГСЗ в разнотипных р-нах, и сопоставление особенностей коры с историей их геол. развития позволяют судить о направленности процессов эволюции коры от геосинклинали к платформе, от материка к океану. Интерпретация данных ГСЗ выходит за рамки представлений о глубине и рельефе сейсмических границ и требует для объяснения их природы изучения процессов, связанных с состоянием и поведением глубинного вещества в условиях высоких давлений и температур. К. А. Некрасова.


Другие определения:

АНИЗОТРОПНОСТЬ — особенность веществ, в частности к-лов, обладать одинаковыми свойствами по параллельным направлениям и в общем случае неодинаковыми по непараллельным направлениям. Син.: векториальность.

ГИДАСПИЙСКИЙ “ЯРУС” ГИДАСПИЙСКИЙ “ЯРУС” [по р. Гидасп], Mojsisovics, Waagen, Diener, 1895, — подразделение, соответствующее верхней части оленекского и нижней части анизийского ярусов; иногда употребляется в З. Европе. ...

КОЭФФИЦИЕНТ ЭКСЦЕНТРИСИТЕТА КОЭФФИЦИЕНТ ЭКСЦЕНТРИСИТЕТА ε, Вистелиус, 1960, — показывает, насколько идеальная форма, аппроксимирующая данный обломок, далека от шара. Определяется путем замеров на контуре частицы, лежащей на плоскости максимальной проекции. К контур...

ОКЕАНИТ — меланократовая разное, базальтов, обогащенная оливиновыми выделениями (до 40% массы п.). Палеотипные аналоги О. называются пикрит-порфиритами. ...

СИСТЕМА РУДООБРАЗУЮЩАЯ СИСТЕМА РУДООБРАЗУЮЩАЯ , Рундквист, 1968, — физ. система, объединяющая источники рудного вещества, пути его перемещения и места локализации оруденения; в истории развития м-ний проявлена та же тенденция, что и в биологической эволюции — по...

СКАРНЫ СУХИЕ СКАРНЫ СУХИЕ , Пилипенко, 1939, — скарны существенно гранат-пироксенового состава. Изл. термин. ...

ТИОАСФАЛЬТЫ [τειον (тейон) — сера] — асфальты с высоким содер. серы. Образуются в условиях гипергенного преобразования высокосернистых нефтей (напр., тринидад-ский асфальт). В существующих классификациях не выделяются в качестве особой гр. ...